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Recent trends in tropical precipitation linked to

organization

Mesoscale Convective System

[Tan et al, Nature 2015]

Cpntrlbut/on from changes in frequency of organized deep convectlon
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Contribution from other convective regimes
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Self-aggregation of deep convection

SAM [Khairoutdinov & Randall 03] «  No Coriolis (f=0) »  No large-scale forcing
SST=300K uniform « Doubly periodic  InRCE

Clouds over near-surface temperature in cloud-resolving model SAM

t=0 minutes
Clouds {white surfaces), surface temperature (colors)

Small domain (L=198km): disorganized convection

« pop corn »
convection
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Large domain (L=510km): convection self-aggregates doma | n
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Self-aggregates

Self Aggregation = Instability of disorganized Radiative-Convective Equilibrium “pop
corn” state

[Bretherton, Blossey, Khairoutdinov, 2005; Sobel, Bellon, Bacmeister 2007, Muller, Held 2012; Emanuel, Wing, Vincent 2013; Wing
Emanuel 2013; Jeevanjee Romps 2013; Khairoutdinov Emanuel, 2013; Shi Bretherton 2014; Tobin, Bony, Roca, 2012, Tobin et al,
2013; Muller Bony 2015; Arnolad Randall 2015; Coppin Bony 2015; Mapes 2016, Holloway Woolnough 2016, Tompkins Semie 2017;
Wing Holloway Emanuel Muller 2017, Becker Bretherton Hohenegger Stevens 2018; Yang 2018; Muller Romps 2018 ...]



Question addressed

How does convective self-aggregation impact
precipitation extremes?

Why?



Question addressed

How does convective self-aggregation impact
precipitation extremes?

Why?

How does convective self-aggregation change with
warming?

> Sara Shamekh poster A27 session 1



Self-aggregation

Variance of precipitable water (mm)

Small domain (L=198km): disorganized convection
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[Muller & Held, JAS 2012]
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Precipitation extremes with self-aggregation

Small domain (L=198km): disorganized convection
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Large domain (L=510km): convection self-aggregates
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3-hourly precip extremes
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Precipitation mm/h Precipitation mm/h
= increased instantaneous precipitation extremes (even more when time-accumulate)
consistent with [Bao Sherwood 2019]



Relative differences
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Precipitation extremes with self-aggregation
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= + 20% increase of instantaneous precip extremes
(large variability with aggregation)
Why 20%"?

~ + 20% increase



Theoretical scaling for precipitation extremes

Precip efficiency Condensation

Dynamic  Thermodynamic

[Muller Takayabu 2019]



Theoretical scaling for precipitation extremes

Condensation | -159,

Precip efficiency

-20% +5%

Dynamic  Thermodynamic
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Theoretical scaling for precipitation extremes

Condensation | -15%,

Precip efficiency

-20% +5%

Dynamic  Thermodynamic

Bolundary layer water vapor increase w/.'thA aggregation (ﬁ +.1 0%)

0.8 |

0.6 |

0.4 - Thermodynamic contribution linked
g 02 ' to boundary layer water vapor
% | " i o [Muller 2013]
g ' Increase due to moister near-cloud

0.4 | ' boundary layer

-0.6 |

| Positive but small contribution
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Theoretical scaling for precipitation extremes

Condensation | -15%,

Precip efficiency

Dynamic  Thermodynamic
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Decrease in CAPE with aggregation (- 40%)
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Theoretical scaling for precipitation extremes

+35% Precip efficiency Condensation | -159,

-20% +5%

Dynamic  Thermodynamic

. Precip efficiency +35%
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Theoretical scaling for precipitation extremes

+35% Precip efficiency Condensation | -159,
+20% | sp ~ 5[

-20% +5%

Dynamic  Thermodynamic

Efficiency €=a(1-) [Lutsko cronin 2018]

conversion o 1 - rain evaporation 8
Cloud condensate q, — precipitating condensate q, —— surface precipitation
+7% (J Clp/ I qn) +25% (Prsfc/ IDrmax)

= Reduced rain evaporation with aggregation dominates

- Due to moister conditions, and
- Faster terminal velocities from warmer temperatures (more rain less snow; no
change in graupel)



Conclusions

« Self-aggregation yields increased precipitation extremes

* Thermodynamic contribution positive but small
Due to moister near-cloud boundary layer

* Dynamic contribution negative
Due to decreased entrainment effects, thus decreased CAPE

* Precip efficiency contribution positive and largest
Dominated by reduced evaporation of rain, from moister and
warmer conditions (latter => faster terminal velocities)

The contribution from organized convection to precip extremes
Is important (compare to 7%/K increase in « pop corn »

convection »
[Da Silva, Shamekh, Muller 2019 (in prep.)]



